Elementary proof of Picard little theorem

We present the proof of Picard little theorem by John L. Lewis in [1]. Here we only extract the essential part for the proof in the paper.

For any harmonic function u on \mathbb{C} , by Poisson formula, we have

$$
u(a + re^{i\theta}) = \frac{1}{2\pi} \int_{\pi}^{\pi} \left[\frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - t) + r^2} u(a + Re^{it}) \right] dt, \forall a \in \mathbb{C}, 0 \le r < R.
$$

And thus, if $u \geq 0$ on $B(a, R)$

$$
\frac{R-r}{R+r}u(a) \le u(a+re^{i\theta}) \le \frac{R+r}{R-r}u(a)
$$
\n(1)

by mean of mean value property of harmonic function. This inequality is called Harnack inequality. In particular, we have

$$
\sup\{u(z) : |z - a| < r\} \le 9 \cdot \inf\{u(z) : |z - a| < r\}
$$

whenever $u \geq 0$ on $B(a, 2r)$.

For simplicity, we denote $M(x, r) = \sup\{u(z) : |z - x| < r\}.$

Lemma 0.1. Let u be a harmonic function, $u(a) = 0$, and $R > 0$. Then there exists $r \in (0, R)$, $x_1 \in B(a, 2R)$, and a universal constant $c_1 \geq 2$ such that $u(x_1) = 0$ and

$$
c_1^{-1}M(a,R) \le M(x_1,10r) \le c_1M(x_1,r).
$$

Proof. Let $\delta(x) = 2R - |x - a|$. Put $E = \{x : u(x) = 0\} \cap B(a, 2R)$. Let $F =$ $\overline{\bigcup_{x\in E}B(x,\delta(x)/100)}$. Set

$$
\gamma = \sup \{ M(x, \delta(x)/100) : x \in E \}.
$$

Noted that $\gamma > 0$ otherwise $u \equiv 0$ by maximum principle. Choose $x_1 \in E$ such that

$$
\gamma \le 2M(x_1, r)
$$
 where $r = \delta(x_1)/100$.

We finish the proof by showing that this x_1 and r satisfy our goal. First we have for $y \in B(x_1, 20r),$

$$
\delta(x_1) \le 2\delta(y) \le 4\delta(x_1).
$$

Pick a $x_2 \in \overline{B}(x_1, 10r)$ with

$$
M(x_1, 10r) \le 2u(x_2).
$$

case 1: If $x_2 \in F$,

$$
M(x_1, 10r) \le 2u(x_2) \le 2\gamma \le 4M(x_1, r).
$$

case 2: If $x_2 \notin F$,

Denote (a, b) to be the open line segment connecting a, b . Denote closed, half open line

segment similarly. Since F is closed, there exists $z \in (x_1, x_2) \cap F$ such that $[x_2, z] \cap F = \phi$. For each $w \in [x_2, z)$, it contains a ball of radius $r/4$ on which $u \geq 0$. Otherwise, by continuity there exists a y such that $u(y) = 0$ with

$$
|y - w| \le \frac{r}{4} = \frac{\delta(x_1)}{400} < \frac{\delta(y)}{100}.
$$

Thus $w \in F$ which contradicts with our choice of z.

Since $[x_2, z]$ can be covered by 80 balls of radius $r/8$, and u is nonnegative on each balls, apply Harnack inequality, we yield

$$
M(x_1, 10r) \le 2u(x_2) \le 2 \cdot 9^{80}u(z) \le 4 \cdot 9^{80}M(x_1, r).
$$

For the left hand side, choose $x_3 \in B(a, R)$ such that $2u(x_3) \geq M(a, R)$. Then argue in the case of $x_3 \in F$ or $x_3 \notin F$ as before. □

Theorem 0.2. Little Picard theorem: A nonconstant entire function in the complex plane omits atmost one value.

Proof. We prove by contradiction. Without loss of generality, we assume f omits 0 and 1. Put $u_1 = \log |f| - 2$, $u_2 = \log |f - 1| - 2$ which are harmonic in C. It can be seen that all positive (or negative) harmonic functions are constant by letting $R \to \infty$ in (1). So we can choose $a \in \mathbb{C}$ such that $u_1(a) = 0$. Applying Lemma 0.1 to u_1 , with $R = 2^j$, $j = 1, 2, ...$ to obtain a sequence $\{z_j\}, \{r_j\}$ with

- 1. $\lim_{i\to\infty} M(z_i, r_i) = +\infty$,
- 2. $M(z_i, 10r_i) \leq c_1 M(z_i, r_i),$
- 3. $u_1(z_i) = 0$ for $j = 1, 2, ...$

Define

$$
v_{i,j}(z) = u_i(z_j + 10r_j z)/M(z_j, 10r_j) \text{ on } B(0,1), i = 1,2, j \in \mathbb{N}.
$$

Since $v_{i,j}$ is bounded from above by 1, we consider the harmonic function $w_{i,j} = -v_{i,j}+1 \geq 0$. Using Harnack inequality, we have for all $z \in B(a, R)$, $j \in \mathbb{N}$, $i = 1, 2$,

$$
\frac{R-|z-a|}{R+|z-a|}w_{i,j}(a) \le w_{i,j}(z) \le \frac{R+|z-a|}{R-|z-a|}w_{i,j}(a)
$$

whenever $\bar{B}(a, R) \subset B(0, 1)$.

Thus, $\{v_{i,j}\}\$ is uniformly bounded and equicontinuous on any compact set in $B(0,1)$. By Arzela-Ascoli, we have a subsequent convergence of $v_{i,j} \to v_i$ uniform on any compact subset of $B(0, 1)$. Clearly, v_i satisfy the mean value property (In fact, they are harmonic in C^{∞} sense.). And it satisfies

- $(*) v_1(0) = 0.$
- (**) $v_1 = v_2$ on $\{x : v_1(x) > 0\} \cup \{x : v_2(x) > 0\} \neq \phi$.
- (***) $\{x : v_1(x) < 0\} \cap \{x : v_2(x) < 0\} = \phi$.

Since $M(z_j, 10r_j) \le c_1 M(z_j, r_j)$, there exists $x_j \in B(0, 1/2)$ such that

$$
M(z_j, 10r_j) \le c_1 M(z_j, r_j) = c_1 u_1(z_j + 10r_j x_j).
$$

Taking limit implying $\{x : v_1(x) > 0\} \cup \{x : v_2(x) > 0\} \neq \emptyset$ (pass to subsequence if necessary). If $v_1(z) = c > 0$, for large j, $|f(z_j + 10r_j z)| >> 0$, thus $\log \frac{|f-1|}{|f|}$ is bounded implying $v_2(z) = v_1(z)$. So we have $(*^*)$.

If $z \in \{x : v_1(x) < 0\} \cap \{x : v_2(x) < 0\}$, we have for some $c < 0$, for large j

$$
\begin{cases}\n\log|f(z_j + 10r_j z)| < 2 + cM(z_j, 10r_j) \to -\infty, \\
\log|f(z_j + 10r_j z) - 1| < 2 + cM(z_j, 10r_j) \to -\infty\n\end{cases}
$$
\n(2)

which is not possible. Thus $(***)$ is verified.

Since v_i are real analytic, by identity theorem and (**), $v_1 \equiv v_2$. By (***), $v_1 \geq 0$. By mean value property and (*), $v_1 \equiv 0$ which contradicts with (**). \Box

References

[1] J. Lewis, Picards theorem and Rickmans theorem by way of Harnacks inequality, Proc. AMS, 122 (1994) 199206